300 research outputs found

    Sums of commutators in pure C*-algebras

    Full text link

    Adiabatic spin pumping through a quantum dot with a single orbital level

    Full text link
    We investigate an adiabatic spin pumping through a quantum dot with a single orbital energy level under the Zeeman effect. Electron pumping is produced by two periodic time dependent parameters, a magnetic field and a difference of the dot-lead coupling between the left and right barriers of the dot. The maximum charge transfer per cycle is found to be ee, the unit charge in the absence of a localized moment in the dot. Pumped charge and spin are different, and spin pumping is possible without charge pumping in a certain situation. They are tunable by changing the minimum and maximum value of the magnetic field.Comment: RevTeX4, 5 pages, 3 figure

    Topological effects at short antiferromagnetic Heisenberg chains

    Full text link
    The manifestations of topological effects in finite antiferromagnetic Heisenberg chains is examined by density matrix renormalization group technique in this paper. We find that difference between integer and half-integer spin chains shows up in ground state energy per site when length of spin chain is longer than ξ\sim\xi, where ξexp(πS)\xi\sim\exp(\pi S) is a spin-spin correlation length, for spin magnitude S up to 5/2. For open chains with spin magnitudes S=5/2S=5/2 to S=5, we verify that end states with fractional spin quantum numbers SS' exist and are visible even when the chain length is much smaller than the correlation length ξ\xi. The end states manifest themselves in the structure of the low energy excitation spectrum.Comment: 4 pages, 6 figure

    Charge occupancy of two interacting electrons on artificial molecules - exact results

    Full text link
    We present exact solutions for two interacting electrons on an artificial atom and on an artificial molecule made by one and two (single level) quantum dots connected by ideal leads. Specifically, we calculate the accumulated charge on the dots as function of the gate voltage, for various strengths of the electron-electron interaction and of the hybridization between the dots and the (one-dimensional) leads. With increasing of the (negative) gate voltage, the accumulated charge in the two-electron ground state increases in gradual steps from 0 to 1 and then to 2. The value 0 represents an "insulating" state, where both electrons are bound to shallow states on the impurities. The value of 1 corresponds to a "metal", with one electron localized on the dots and the other extended on the leads. The value of 2 corresponds to another "insulator", with both electrons strongly localized. The width of the "metallic" regime diverges with strength of the electron-electron interaction for the single dot, but remains very narrow for the double dot. These results are contrasted with the simple Coulomb blockade picture.Comment: 12 pages, 7 figure

    Kondo effect induced by a magnetic field

    Full text link
    We study peculiarities of transport through a Coulomb blockade system tuned to the vicinity of the spin transition in its ground state. Such transitions can be induced in practice by application of a magnetic field. Tunneling of electrons between the dot and leads mixes the states belonging to the ground state manifold of the dot. Remarkably, both the orbital and spin degrees of freedom of the electrons are engaged in the mixing at the singlet-triplet transition point. We present a model which provides an adequate theoretical description of recent experiments with semiconductor quantum dots and carbon nanotubes

    Exact solution for two interacting electrons on artificial atoms and molecules in solids

    Full text link
    We present a general scheme for finding the exact eigenstates of two electrons, with on-site repulsive potentials U_i, on I impurities in a macroscopic crystal. The model describes impurities in doped semiconductors and artificial molecules in quantum dots. For quantum dots, the energy cost for adding two electrons is bounded by the single-electron spectrum, and does not diverge when U_i approaches infinity, implying limitations on the validity of the Coulomb blockade picture. Analytic applications on a one-dimensional chain yield quantum delocalization and magnetic transitions.Comment: 4 pages, 1 figur

    Comparison theory and smooth minimal C*-dynamics

    Full text link
    We prove that the C*-algebra of a minimal diffeomorphism satisfies Blackadar's Fundamental Comparability Property for positive elements. This leads to the classification, in terms of K-theory and traces, of the isomorphism classes of countably generated Hilbert modules over such algebras, and to a similar classification for the closures of unitary orbits of self-adjoint elements. We also obtain a structure theorem for the Cuntz semigroup in this setting, and prove a conjecture of Blackadar and Handelman: the lower semicontinuous dimension functions are weakly dense in the space of all dimension functions. These results continue to hold in the broader setting of unital simple ASH algebras with slow dimension growth and stable rank one. Our main tool is a sharp bound on the radius of comparison of a recursive subhomogeneous C*-algebra. This is also used to construct uncountably many non-Morita-equivalent simple separable amenable C*-algebras with the same K-theory and tracial state space, providing a C*-algebraic analogue of McDuff's uncountable family of II_1 factors. We prove in passing that the range of the radius of comparison is exhausted by simple C*-algebras.Comment: 30 pages, no figure

    Quantized adiabatic charge pumping and resonant transmission

    Full text link
    Adiabatically pumped charge, carried by non-interacting electrons through a quantum dot in a turnstile geometry, is studied as function of the strength of the two modulating potentials (related to the conductances of the two point-contacts to the leads) and of the phase shift between them. It is shown that the magnitude and sign of the pumped charge are determined by the relative position and orientation of the closed contour traversed by the system in the parameter plane, and the transmission peaks (or resonances) in that plane. Integer values (in units of the electronic charge ee) of the pumped charge (per modulation period) are achieved when a transmission peak falls inside the pumping contour. The integer value is given by the winding number of the pumping contour: double winding in the same direction gives a charge of 2, while winding around two opposite branches of the transmission peaks or winding in opposite directions can give a charge close to zero.Comment: 7 pages, 12 figure

    On the absence of ferromagnetism in typical 2D ferromagnets

    Full text link
    We consider the Ising systems in dd dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions which decay with a power, ss, of the distance. The physical context of such models is discussed; primarily this is d=2d=2 and s=3s=3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form. We prove that when the power of decay lies above dd and does not exceed d+1d+1, then for all temperatures, the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d+1d+1 (with d2d\ge2) magnetic order can occur.Comment: 15 pages, CMP style fil

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets 0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, JnsRnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones JisSiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page
    corecore